Comprehensive Die-Level Assessment of Design Rules and Layouts

Rani Ghaidaa, Yasmine Badrb, Mukul Guptay, Ning Jina, Puneet Guptab

aGlobal Foundries, Inc.
bEE Department, UCLA
yQualcomm, Inc.

puneet@ee.ucla.edu
Introduction

• Impact of new technologies on design is inferred from Design Rules (DRs)

• Process of evaluation of DRs is largely unsystematic and empirical

• Interaction of DRs with layouts, performance, margins, yield requires a fast and systematic evaluation method
Prior Work

UCLA_DRE (ICCAD’09, TCAD’12)

- A framework for early exploration of design rules, patterning technologies, layout methodologies, and library architectures
- Standard cell-level evaluation

Shortcomings

- Not every change in cell area results in a corresponding change in chip area
- Chip area can be affected by buffering and gate sizing to meet timing constraints
Prior Work

UCLA_DRE (ICCAD’09, TCAD’12)

- A framework for early exploration of design rules, patterning technologies, layout methodologies, and library architecture.
- Standard cell-level evaluation.

Shortcomings

- Not every change in cell area results in a corresponding change in chip area.
- Chip area can be affected by buffering and gate sizing to meet timing constraints.

Chip-Level Design Rule Evaluation (Chip-DRE)
Chip-DRE: Chip level Design Rule Evaluator

- Generates virtual standard-cell library
- Employs semi-empirical and machine-learning-based models

Good Chips per Wafer (GCPW)

- unified metric for area, performance, variability and functional yield metrics

\[
\frac{\text{wafer_area}}{\text{chip_area}} \quad \text{yield}
\]
FLOW OF CHIP-DRE
Chip-DRE Flow

- **Design Rule Set**
- **Cell Usage Statistics**
- **Library Transistor-Level Netlist**

Cell Area Estimator
- Initial cell-area
- Final cell-area

Cell Delay Estimator
- Cell-area scaling factor
- Delay scaling factor

Cell Delay-to-Area Machine Learning Estimation

Cell-Area to Chip-Area Model

Chip Functional Yield Estimator

Good Chips per Wafer
Chip-DRE Flow

Design Rule Set

Cell Usage Statistics

Library Transistor-Level Netlist

Cell Area Estimator

Cell Delay Estimator

Cell Delay-to-Area Machine Learning Estimation

Cell-Area to Chip-Area Model

Chip Functional Yield Estimator

Good Chips per Wafer

Initial cell-area

Final cell-area

Cell-area scaling factor

Delay scaling factor

Chip-area estimate
Chip-DRE Flow

Design Rule Set
Cell Usage Statistics
Library Transistor-Level Netlist

DRE

Cell Area Estimator

Cell Delay Estimator

Delay scaling factor

Cell Delay-to-Area Machine Learning Estimation
Chip-DRE Flow

- Design Rule Set
- Cell Usage Statistics
- Library Level

Cell Area Estimator

- Initial cell-area
- Final cell-area

Cell-Area to Chip-Area Model

Chip Functional Yield Estimator

Good Chips per Wafer

Cell Delay Estimator

- Delay scaling factor

Cell Delay-to-Area Machine Learning Estimation

- RC approximation
- Elmore Delay
- Current variability used to estimate worst case delay

Chip Functional Yield Estimator

- Good Chips per Wafer
Chip-DRE Flow

Design Rule Set

Cell Usage Statistics

Library Transistor-Level Netlist

Cell Area Estimator

Add Initial cell-area

Final cell-area

Cell-Area to Chip-Area Model

Cell Delay Estimator

Delay scaling factor

Machine Learning Estimation

Chip Functional Yield Estimator

Good Chips per Wafer
Cell Delay-to-Area Model

• Addresses effect of timing optimization during physical synthesis
• Predicts total cell-area scaling factor as cell-delay is scaled
• Based on Machine learning: Neural Network
• Features:
 – number of instances on critical path,
 – average fanout, average interconnect length,
 – average delay and area of gates on critical path,
 – utilization and timing constraint,
 – ratio between area of critical paths to total cell area and
 – delay scaling factor
Cell Delay-to-Area Model

- Addresses effect of timing optimization during physical synthesis
- Predicts total cell-area scaling factor as cell-delay is scaled
- Based on Machine learning: Neural Network

![Graphs showing cell area vs delay scaling factor for MIPS and FPU](image-url)
Chip-DRE Flow

- Design Rule Set
- Cell Usage Statistics
- Library Transistor-Level Netlist

Cell Area Estimator
- Initial cell-area
- Final cell area

Cell-Area to Chip-Area Model
- Chip-area estimate

Cell Delay Estimator
- Cell-area scaling factor

Cell Delay-to-Area Machine Learning Estimation
- Delay scaling factor

Chip Functional Yield Estimator
- Good Chips per Wafer
Cell-area to Chip-area Model

• Semi-empirical model to estimate chip-area in terms of cell-area
• Accounts for routing-limited designs
• Coefficients fitted from P&R experiments
 – Use AEGR (Area estimation using Global Routing)
 • Estimate maximum utilization such that design is routable
 • Up to 7x speedup

\[
y = x + (y_0 - x_0) \times \left(\frac{x_0}{x} \right) \frac{x_0}{y_0 - x_0} \text{ for } x > x_0,
\]

\[
y = y_0 \text{ for } x \leq x_0.
\]

\(x\) : total cell-area
\(y\) : chip-area
\(x_0, y_0\) : fitting coefficients
Cell-area to Chip-area Model

- Semi-empirical model to estimate chip-area in terms of cell-area
- Accounts for routing-limited designs
- Coefficients fitted from P&R experiments
 - Use AEGR (Area estimation using Global Routing)
 - Estimate maximum utilization such that design is routable
 - Up to $7 \times$ speedup

$$y = x + (y_0 - x_0) \times \left(\frac{x_0}{x} \right)^{\frac{x_0}{y_0 - x_0}} \text{ for } x > x_0,$$

$$y = y_0 \text{ for } x \leq x_0.$$

x : total cell-area
y : chip-area
x_0, y_0 : fitting coefficients
Chip-DRE Flow

Using DRE: Overlay, contact hole, random particle defects

Chip Functional Yield Estimator

Cell Area Estimator
- Initial cell-area
- Final cell-area

Cell Area to Chip-Area Model

Cell Delay Estimator
- Cell-area scaling factor
- Delay scaling factor

Cell Delay-to-Area Machine Learning Estimation

Design Rule Set

Cell Usage Statistics

Library Transistor-Level Netlist

Chip Functional Yield Estimator

Good Chips per Wafer
SAMPLE STUDIES USING CHIP-DRE
Well-to-active Spacing Rule Exploration

• As Well-to-active spacing rule increases:
 – Cell area increases
 – Cell delay decreases due to well proximity effect

• Dependence of GCPW and chip-area on the rule value is non-monotone!

• Verified against PR runs, with max error of 3%
FinFET Fin-Pitch Study

- Fin pitch effect on chip area of FPU
- Fin pitch of 60nm through 100nm, cell area is steeply increasing while chip area is slightly changing
- Error <5%
Local Interconnect-to-poly Spacing Study

• As LI-to-poly space increases
 – Cell area increases
 – Cell delay changes: capacitive coupling decreases but diffusion capacitance may increase

• Study shows cell-area increase dominates over potential chip-area decrease
Conclusion

• Introduced Chip-DRE framework for fast and systematic evaluation of design rules and library architectures at chip-scale

Future Work

• Include Power optimization
• Extend to back-end rules and use Chip-DRE to develop DR and library projections for 5nm node
QUESTIONS ?
BACKUP
Cell Delay Estimation
Yield Estimator

- Using DRE
- Considers probability of survival from:
 - **Overlay error**: Normal distribution
 - **Random Particle Defects**: Critical area analysis + negative binomial yield model
 - **Contact hole failure**: Poisson distribution
Numeric Results for WPE Experiment

<table>
<thead>
<tr>
<th>Well-to-active spacing [nm]</th>
<th>Run-time (SPR) [min]</th>
<th>Cell-Area (Chip-DRE) [um²]</th>
<th>Chip-Area (Chip-DRE) [um²]</th>
<th>Chip-Area (SPR) [um²]</th>
<th>Error [%]</th>
<th>GCPW (Chip-DRE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>118</td>
<td>28171</td>
<td>30364</td>
<td>30130</td>
<td>0.8</td>
<td>667</td>
</tr>
<tr>
<td>185</td>
<td>356</td>
<td>28171</td>
<td>29709</td>
<td>29460</td>
<td>0.8</td>
<td>681</td>
</tr>
<tr>
<td>200</td>
<td>240</td>
<td>32527</td>
<td>33008</td>
<td>33913</td>
<td>-3</td>
<td>612</td>
</tr>
<tr>
<td>210</td>
<td>207</td>
<td>32554</td>
<td>32787</td>
<td>33554</td>
<td>-2</td>
<td>616</td>
</tr>
</tbody>
</table>
Variability
Variability

- Current variability index:

\[\Delta \left(\frac{W}{L} \right) = \frac{\sum_{all\,gates} \left| \Delta \left(\frac{W}{L} \right)_i \right|}{\left(\frac{W_{tot}}{L} \right)_{ideal}} \]

- Modeling delta W/L for each source of variability from literature (tapering, diffusion and poly rounding, CD variability)
Manufacturability

- Manufacturability Index for evaluating DRs is probability of survival (POS) from three major sources of failure
 - contact-defectivity (a.k.a. contact-hole failure);
 - overlay error (i.e. misalignment between layers) coupled with lithographic line-end shortening (a.k.a. pull-back);
 - random particle defects.
Manufacturability (cont’d)

• Contact hole yield follows poisson yield model: \(Y = Y_0 \cdot e^{\lambda} \)
 Lambda is average # failed contacts = # contacts * failure rate.
• Overlay vector components in x and y directions are described by a normal distribution with zero mean & 3\(\sigma \).
• We compute POS from overlay causing: failure to connect between contact and poly/M1/diffusion, gate-to-contact short defect, and always-on device caused by poly-to-diffusion overlay error.
• For failure caused by random particles, critical area analysis for open and short defects at M1/poly/contact layers and short defects between gates and diffusion-contacts.
• Yield = yield_contact * yield_overlay * yield3_randomParticles;