A SEGMENTATION-BASED BISR SCHEME

Georgios Zervakis, Nikolaos Eftaxiopoulos, Kostas Tsoumanis, Nicholas Axelos, Kiamal Pekmestzi
SRAM memory: Determining factor in yield loss and reliability problems in modern SoC (System on Chip)

Small geometries, Voltage scaling → Manufacturing defects and process variation

Need for fault tolerance techniques
Conventional techniques
- Use of spare rows and columns
- External test equipment creates fault map
- Faulty elements are replaced by spare ones
- Costly and time consuming

BISR (Built-in Self-Repair) techniques
- Move repair process on-chip
- Repairing circuitry intervening in the decoding operation
- Localization of faulty cells by a BIST (Built-In Self-Test) circuitry
Granularity of repair affects remapping circuitry overhead and utilization of spare elements

- Row/Column-based techniques → Simple circuitry, Not efficient allocation of spare resources
- Block/bit-based techniques → Complex circuitry, Efficient allocation of spare resources

Considering the tradeoff, a cache-based architecture with multiple banks was proposed
- Multiple cache banks that repair faulty elements in word or bit level
 - Faulty words are directly mapped to redundant cache banks.
 - Each cache bank has half the lines of its previous one.
 - Mathematical analysis proves that for λ faulty words in the MUR (Memory under repair), $\sim 100\%$ reparability can be achieved using this technique if the primary cache bank has $n=2\lambda$ lines.
 - The bit level technique reduces the area overhead comparing to the word level one.
Previous work (2/2)

MUR

\[N = n \cdot m \] words

Bank 1
\(n \) words

Bank 2
\(\frac{n}{2} \) words

MUR

\[n \]

\[\frac{n}{2} \]

\[n-1 \]

\[\frac{n}{2} + 1 \]

\[\vdots \]

\[\text{Block } (n-1) \]

\[\text{Block } (n/2-1) \]

\[\vdots \]

\[\text{Block } 1 \]

\[\vdots \]

\[\text{Block } 0 \]

\[m \] words

Bank 1

\[0 \]

\[1 \]

\[\vdots \]

\[n-1 \]

\[\vdots \]

\[\text{Bank } 1 \]

\[0 \]

\[1 \]

\[\vdots \]

\[\text{Bank } 1 \]
A segmentation-based BISR scheme is proposed

- The MUR (Memory Under Repair) word is segmented in parts and can be repaired in any segmentation level.
- A part of the address is used as an index (DI) to map the repaired word in the cache banks and another part is used as a tag (TI) to identify the exact word that is mapped.
- A special field (part) in each cache line identifies which segment of the MUR word is repaired.
Except for the cache banks there is a remapping and routing circuit

- Identifies if parts of the requested word are stored in the cache bank circuitry and drives them to the data bus.

Interaction with BIST

- A BIST circuitry has previously identified all the faulty parts of the MUR and distributed them in the spare cache banks.
Proposed BISR scheme (3/6)
A mathematical analysis proved that:

- The probability of the MUR being fully repaired by the BISR circuitry does not depend on the level of segmentation.
- For λ faulty bits in the MUR, a primary bank with $n=2\lambda$ lines is required to achieve $\sim 100\%$ reparability independently of the segmentation level.
- Negligible differences in the probability of repair are observed only for values of faulty bits ($\lambda > 2n$) that even the non-segmented scheme cannot repair with $\sim 100\%$ probability.
Proposed BISR scheme (5/6)

- MUR 1Mx64, primary cache bank with 64 lines

![Graph showing repair probability vs faulty bits for different bit segmentations: non-segmented, 32-bit, 16-bit, 8-bit, 4-bit, 2-bit, 1-bit.]
Proposed BISR scheme (6/6)

- MUR 1Mx64, primary cache bank with 64 lines

![Graph showing segmented and non-segmented probability against faulty bits (λ)]

- non-segmented
- 32-bit
- 16-bit
- 8-bit
- 4-bit
- 2-bit
- 1-bit
The level of segmentation does not affect the ~100% reparability.

The basic criteria to find the optimal segmentation is the area occupied (transistor count) by the BISR circuitry.

- Segmenting in bit-level seems an obvious solution but the additional remapping and routing circuitry becomes significantly larger.
- The area occupied by the BISR circuitry for each level of segmentation was computed using a unit gate model.
The area of the BISR circuitry is affected by the:

- Size of the MUR (N lines, M-bit words)
 - An exhaustive exploration about the effect of the MUR lines (N) was conducted and the impact proved to be insignificant. The number of MUR lines is set to $N=2^{20}$
 - The most usual memory word lengths (8, 16, 32 and 64-bit) are used in the exploration

- Lines of primary cache bank (n)
 - The exploration was conducted for a range of lines of the primary cache bank from 4 to 2048

- All the possible segmentations were explored
Exploration of optimal segmentation (3/7)

- MUR word length = 8 bits

The graph shows the normalized transistor count against the lines of primary cache bank (n) for different segmentations: non-segmented, 4-bit, 2-bit, and 1-bit. The trend indicates a decrease in normalized transistor count as the number of lines increases.
Exploration of optimal segmentation (4/7)

- **MUR word length = 16 bits**

![Graph showing normalized transistor count vs. lines of primary cache-bank (n)]

- non-segmented
- 8-bit
- 4-bit
- 2-bit
- 1-bit
Exploration of optimal segmentation (5/7)

- MUR word length = 32 bits

![Graph showing normalized transistor count vs. lines of primary cache-bank (n) for different segmentation sizes: non-segmented, 16-bit, 8-bit, 4-bit, 2-bit, and 1-bit. The graph illustrates the trade-off between transistor count and cache size for various segmentation depths.]
Exploration of optimal segmentation (6/7)

- MUR word length = 64 bits

![Graph showing normalized transistor count versus lines of primary cache-bank (n) for different word lengths: non-segmented, 32-bit, and 16-bit.](image-url)
Overall observation of the results

- The non-segmented scheme is the one with the highest area overhead and it must be avoided.
- The 1-bit segmentation, although it might seem as the obvious solution, never proves to be the best option.
- When the MUR has a high fault rate, the 2-bit segmentation seems to be the optimal choice.
- When the MUR fault rate becomes smaller and the word length increases, segmentation in bigger groups (4-bit, 8-bit) should be preferred.
A BISR scheme with parametric repair level is proposed. The proposed scheme can operate for all the possible segmentations of the MUR word. According to a mathematical analysis the reparability is not affected by the segmentation level. In terms of transistor count the non-segmented scheme proves to have the highest area overhead while the 2-bit segmentation proves to be the optimal for high fault rates of the MUR.
This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales -UOA- HOLISTIC. Investing in knowledge society through the European Social Fund.
Thank You!

☐ Questions?