Adaptive Interpolation-Based Model Checking

Chien-Yu (Leo) Lai, Cheng-Yin Wu, Chun-Yang (Ric) Huang

2014.1.23
Outline

• Introduction
• Adaptive IMC Framework
• Flexible Interpolation
• Experimental Results
• Conclusion
INTRODUCTION
Interpolation-Based Model Checking (IMC)\(^1\)

\[I_0 \land T \land \neg P \land k=0 \]

SAT: Increase \(k \)

UNSAT: \(I_0 \land T^k \land \neg P \) ?

R = over-approximation within one more step

\[I_0 \land T^k \land R ? \]

SAT: Fixed point? No

UNSAT: Yes

\[^1\text{K. L. McMillan, Interpolation and SAT-based model checking (CAV 2003)}\]
Interpolation-Based Model Checking (IMC)

BMC Phase: $I_0^\wedge T^k \wedge \neg P$?

ITP Phase: Iteratively compute over-approximation step by step

Spurious counter-example

Real counter-example

UNSAFE

inconsistent

SAFE

Fixed point?

Refinement: increase k
Interpolation-Based Model Checking (IMC)

\[I_0, T, !P, k=0 \]

Fast?

- Fast?
- Fast?
- Fast?

Increase k

SAT

UNSAT

UNSAFE

Adequate?

UNSAFE

SAFE

R = over-approximation

Fixed point?

Yes

No
Too fine-grained

\[I_0, T, \neg P, k=0 \]

\[I_0^{\wedge T^k \wedge \neg P} ? \]

SAT

UNSAFE

UNSAT

Increase \(k \)

\[I_0^{\wedge T^k \wedge R} ? \]

SAT

\[R = \text{over-approximation within one more step} \]

SAFE

UNSAT

Requires several iterations to jump out

Fixed point?

Yes

No

\[I_0^{\wedge T^k \wedge \neg P} ? \]

SAT

UNSAFE

UNSAT
Too Coarse

I_0, T, !P, k=0

I_0^{T^k!P}?

Increase k

SAT

UNSAFEx

R = over-approximation within one more step

Hardly reach fixed point before spurious counter-examples

Need frequent refinement

I_0^{T^k!P}?

SAT

UNSAT

I_0^{T^k!P}?

No

Fixed point?

Yes

SAFE
Two examples

Need for finer-grained abstraction

Need for coarser abstraction

Spurious counter-example

Abstract reachability

Bad states
Previous Works – Single, Blind Granularities

• McMillan’s IMC1
 – Depends only on the refutation proof

• NewITP2
 – Depends only on the strength of SAT/UNSAT generalizations

1K. L. McMillan, Interpolation and SAT-based model checking (CAV 2003)
2C.Y. Wu, A counterexample-guided interpolant generation algorithm for SAT-based model checking (DAC’13)
Two examples (review)

With single granularity, IMC hardly solves both of them

Need for finer-grained abstraction

Need for coarser abstraction

Spurious counter-example

Abstract reachability

Bad states
ADAPTIVE IMC FRAMEWORK
Adaptive IMC Framework

\[I_0^{\land T^k \land P} ? \]

- **SAT**: Increase \(k \)
- **UNSAT**: Fixed point? (No → Coarser, Yes → SAFE)

Adaptivity
- Tends to contain counter-examples → Finer
- Hard to Converge → Coarser

Flexible interpolation
FLEXIBLE INTERPOLATION BY REACHABILITY PARTITIONING
Reachability v.s. Granularity

• When $I_0^T T^{k-1} T^R$ is UNSAT, not all clauses get involved with UNSAT proof

- Concrete transitions
- Transitions by freed constrains
Reachability v.s. Granularity

- If the reachability is smaller, more clauses are absent in UNSAT proof
Make Abstraction Coarse

• By just partitioning \(R \) into 2 slices
Make Abstraction Coarse

- Constrains restricting the transitions from R_1 is missing
Make Abstraction Coarse

• Likewise

\[l_0^{\wedge}T^{k-1} \]

Transitions by freed constrains
Make Abstraction Coarse

• The disjunction of the reachability becomes coarse than computing R’s directly

\[I_0 \wedge T^{k-1} \]
Flexible Interpolation by Reachability Partitioning

\[R_n \]

\[\text{Reachability partitioner} \]

\[n = \#\text{slices} \]

\[r_1, r_n \]

\[\text{ITP}_n \]

\[\text{ITP}_1 \]

\[\text{Disjoint} \]

\[\text{Final ITP} \]
ATR&R INTERPOLATION
2-Step Interpolation

1. Transition Relation Abstraction

2. Reachability Construction
ATR to ATR Circuit

- Extract UNSAT core on the last time-frame

Extract this part
ATR Circuit

• Record the presence of clauses in proof
Ternary Simulation

• Finds don’t-care state variables

Find inputs For x0xx11x
ATR Circuit Simulation

• Similar to ternary simulation
• Consider constraints absent in abstract transition relation

\[(ab \rightarrow c)\]
\[(c \rightarrow a)\]
\[(c \rightarrow b)\]

\[c \text{ doesn’t imply } b \text{ anymore}\]
Interpolant Construction

• Iteratively Solve the previous states

After ATR circuit simulation
Adaptive IMC Framework (review)

I_0, T, !P, k=0

I_0^T_k^!P ?

Increase k

IO^T_k^!P ?

SAT

Increase k

IO^T_k^R ?

SAT

Hard to Converge ➔ Increase #slices

UNSAT

Fixed point?

Yes ➔ SAFE

No ➔ Unsafe

Tends to contain counter-examples ➔ Decrease #slices

ATR&R Interpolation

Adaptivity

FIRP

Adaptivity
What We Refine

• BMC step

• Interpolation Algorithm
EXPERIMENTAL RESULTS
Experiment Setup

• Intel(R) Xeon(R) CPU E5405, 2.00GHz
• 7GB memory, 15 minutes time-out
• hwmcc11nointel.7z
 – Downloaded from HWMCC website
• Initial number of slice: 1
 – Same as the McMillan’s IMC
Comparison in total cases

![Graph showing comparison in total cases for AIMC, NewItp, and McMillan.](image)

- Number of solved instances vs. time-out (sec)
- AIMC: 255
- NewItp: 244
- McMillan: 217
Statistics in Detail

<table>
<thead>
<tr>
<th>405 cases in total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIMC</td>
</tr>
<tr>
<td>All Solved</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Solved only</td>
</tr>
<tr>
<td>Unsolved only</td>
</tr>
<tr>
<td>All Unsolved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>100 cases unsolved by PDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIMC</td>
</tr>
<tr>
<td>Solved</td>
</tr>
</tbody>
</table>
CONCLUSION
Contribution

• Adaptive interpolation framework

• Abstraction degree manipulation

• Enhancement of IMC
 – Solve the most instances in total
 – Solve the most instances hard for PDR
Novelty

- Flexible interpolation by reachability partitioning
- 2-phase interpolation
- 1-way SAT/UNSAT generalization by only one-time simulation
Thanks for Your Attention!