3DLAT: TSV-based 3D ICs crosstalk minimization utilizing Less Adjacent Transition Code

Qiaosha Zou
Dimin Niu
Yan Cao
Yuan Xie

The Pennsylvania State University
3D integration is a promising solution for interconnect crisis.

- Capacitance crosstalk in TSVs
 - Relatively large size of TSVs
 - Coupled deep inside the substrate

Source: Micron Hybrid Memory Cube
Outline

- Preliminaries
 - Backgrounds on crosstalk
 - 2DNAT (no adjacent transition) Code: Transition signaling and Limited Weighted Code

- 3D LAT Coding Mechanism

- Performance and power evaluation
Crosstalk in TSV arrays

- **Analysis Complexity:**
 - Increased number of neighbors
 - Each victim has 8 aggressors.

- **Transition direction matters**
 - \(\Delta V_i = V_i(t^+) - V_i(t^-) \) (0 to 1, or 1 to 0)
 - \(\delta_{i,k} = \text{abs}\left(\frac{\Delta V_i - \Delta V_k}{V_{dd}}\right) \) (value of 0, 1, or 2)
Crosstalk in TSV arrays

- Effective crosstalk capacitance
 \[C_{\text{eff},i} = C_L (1 + \lambda_1 \sum \delta_n + \lambda_2 \sum \delta_d) \]
 - \(\lambda \) represents the capacitance ratio between coupling capacitance and self capacitance.

- Crosstalk classification
 - \(\sum \delta_n \) can be any integer in \([0, 8]\)
 - 0C to 8C without considering diagonal TSVs
 - Add 9C and 10C for four diagonal TSVs
Previous work on 3D crosstalk

- 3D k-CAC: Crosstalk Avoidance Code (Kumar et al., DATE 2013)
 - Eliminate the transmission pattern that causes (k+1)C crosstalk.
 - Problems: large overhead and complexity

- ShieldUS (Chang et al., ASPDAC2013):
 - Use relatively stable data signals as shields
 - Problems: data mapping & unstable performance

How does 2D design handle crosstalk problem?
2D No Adjacent Transition Code

- Combine the transition signaling and the limited weighted code.

Transition Signaling

- Input bit is 1 => transition occurs
- Assume signal is 10010, wire voltage is LLHHL
- XOR previous and current wire value for input data

<table>
<thead>
<tr>
<th>Input Signal</th>
<th>1 0 0 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Limited Weighted Code & 2D NAT

- Limited Weighted Code
 - Weight: number of 1s in the data
 - Encode to limit the weight of each data input

- 2D NAT
 - No adjacent 1s are allowed in codeword
 - Avoidance Pattern:

 \[
 \begin{array}{ccc}
 H & L & H \\
 \downarrow \\
 L & H & L
 \end{array}
 \]
3D NAT is infeasible

- Imagine apply 2D NAT into 3D designs...
 (assume weak coupling between diagonal TSVs)

```
  X  \bar{b}  X
  \bar{b}  b   \bar{b}
  X  \bar{b}  X
```

b can be only 0 or 1

Codeword Cardinality (number of qualified codeword) is only 2^5 compared to 2^9.
Outline

- Preliminaries

- 3D LAT Coding Mechanism
 - LAT code design
 - LAT optimization
 - Heuristic CODEC design

- Performance and power evaluation
3D limited weighted LAT code

- Limit the number of 1s in adjacent nodes
 - Adjacent nodes include eight neighbors in the array
 - Target at TSV arrays with 3 rows.
 - Use ω for maximum allowed weight for each 3*3 TSVs
 - Limit the crosstalk within $(\omega - 1) \times 2C$
 - Worst case consideration.
 - At most $\omega - 1$ neighbors are with the opposite transition direction.
Code Cardinality Calculation

- The codeword overhead is determined by the code cardinality.
- The number of codeword should not be smaller than the number of data input ($T(\omega, N) \leq 2^d$)

Impossible to calculate code cardinality with variable weights for each 3*3 TSV array.

Lower bound of the code cardinality is used instead. Each TSV subarray has exact the same weight.

\[
\begin{align*}
\omega_1 &= 1 \\
\omega_2 &= 0 \\
\omega_3 &= 2
\end{align*}
\]
Codeword Cardinality Induction

When value of N is small, enumeration is used to get the code cardinality.
For large N, inductive method is used to calculate $T(\beta, N)$, until the minimum required N is found.
ω-LAT transmission framework

- Two level of encoder
 - LAT encoder
 - Transition signaling encoder
ω-LAT coding overhead

- ω is reduced, overhead is increased
- The overhead is the upper bound
- ω=2 has large overhead, but significantly smaller than 3D CAC (335% overhead)
LAT Code Optimization

- Only encode the data input that doesn’t qualified.
 - For example, 00100 doesn’t need to be encoded.
- Techniques:
 - Bus Inverting
 - Weight Detecting
- Limitations:
 - Timing overhead
 - Detector area overhead
Comparison of baseline and optimized scheme

- With increased data bitwidth, the overhead reduction becomes marginal.
- The number of weight detectors increased with longer input.

<table>
<thead>
<tr>
<th>Data Bitwidth</th>
<th>Optimized</th>
<th>Original</th>
<th>Reduced Ratio</th>
<th>Overhead Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>column</td>
<td>overhead (%)</td>
<td>column</td>
<td>overhead (%)</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-40</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>-10</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>60</td>
<td>9</td>
<td>80</td>
</tr>
<tr>
<td>20</td>
<td>11</td>
<td>65</td>
<td>12</td>
<td>80</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>80</td>
<td>15</td>
<td>80</td>
</tr>
</tbody>
</table>
Heuristic CODEC design

- No universal CODEC design due to the variation on ω.
- Option 1: Look Up Table based CODEC design.
- Option 2: Analyze the 3D LAT coding scheme.
- Two level of comparators are used in encoder
 - First level: TSV subarray weight
 - Second level: combination of α_1 to α_3

Heuristic CODE design on case study
- $\omega=4$, data input 16 bits
- Data input value 1024
CODEC design case study

- Codeword bitwidth is 27 and has 9 columns
- Decide ω based on the codeword cardinality.

<table>
<thead>
<tr>
<th>ω</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardinality</td>
<td>1</td>
<td>81</td>
<td>2268</td>
<td>24060</td>
<td>61398</td>
</tr>
<tr>
<td>value</td>
<td>1</td>
<td>82</td>
<td>2350</td>
<td>26410</td>
<td>87808</td>
</tr>
</tbody>
</table>

$82 < 1024 < 2350$

Subarray weight is 2

$\alpha_1 + \alpha_2 + \alpha_3 = 2$
Calculate the codeword cardinality and determine the α combination

- 6 combinations: (0,1,1) (1,0,1) (1,1,0) (0,0,2) (0,2,0) (2,0,0)

Determine code cardinality for each combination

Find the combination according to the cardinality

- We choose to use (1,0,1) for value 1024.
CODEC design case study

- Determine the row position of the 1ss.
 - \(k_0 \times 3^0 + k_1 \times 3^1 + k_2 \times 3^2 + k_3 \times 3^3 + k_4 \times 3^4 + k_5 \times 3^5 \)

- For 1024, the final codeword is:
 - \((k_0, k_1, k_2, k_3, k_4, k_5) = (0, 2, 2, 2, 1, 0)\)

<table>
<thead>
<tr>
<th>Codeword for 1024:</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Outline

- Preliminaries
- 3D LAT Coding Mechanism
- Performance and power evaluation
 - Analytical power evaluation
 - Performance simulation
Power Evaluation

- **Analytical Power Model**

\[P^s = \frac{1}{2} C_L V_{DD}^2 \times Pr(\text{trans}) \]

\[P^c = C_c V_{DD}^2 \times Pr(V_k(t^+) \neq V_{k+1}(t^+)) \times E_t \]

<table>
<thead>
<tr>
<th>code</th>
<th>$Pr(\text{trans})$</th>
<th>$Pr(V_k(t^+) \neq V_{k+1}(t^+))$</th>
<th>$E_{tc}(k, k + 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>uncoded</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>ShieldUS</td>
<td>0.5</td>
<td>0.5</td>
<td>≤ 1</td>
</tr>
<tr>
<td>6C CAC</td>
<td>0.5</td>
<td>0.367</td>
<td>1</td>
</tr>
<tr>
<td>4-LAT</td>
<td>0.4079</td>
<td>0.5</td>
<td>0.8159</td>
</tr>
</tbody>
</table>

Assume λ_1 is 5.54, power consumption for uncoded cases is $8.56C_L V_{DD}^2$, 4-LAT is $6.98C_L V_{DD}^2$.
Benchmark Analysis

- Extract SPEC 2006 Benchmark memory trace and perform crosstalk class analysis
- Performance evaluation comparison with ShieldUS, 3-LAT, and ideal case.

- Most data transmission are within 5C crosstalk.
Performance Evaluation

- Ideal case: transmission time is flexible and determined by the crosstalk class.

- Ideal case always has the optimal performance.
- ShieldUS cannot guarantee the transmission time
- With determined value of ω, the proposed scheme can have stable performance.
Conclusion

- Due to the relatively large size and deep substrate coupling, 3D capacitive crosstalk minimization should be considered.
- ω-LAT (less adjacent transition) coding scheme is proposed to minimize crosstalk.
- The overhead is affordable with aggressive crosstalk minimization.
- Power consumption of each TSV is reduced and transmission delay can be guaranteed.
Thank you!

Q & A