PROCEED: Pareto Optimization-based Circuit-level Evaluation Methodology for Emerging Devices

ASP-DAC 2014

Shaodi Wang, Andrew Pan, Chi-On Chui and Puneet Gupta
Department of Electrical Engineering, University of California, Los Angeles
Need for Device Evaluation

• Traditional CMOS technologies are reaching physical limits
• Many alternative emerging devices under investigation: TFET, CNT, Heterogeneous CMOS, etc. → need to be able quickly compare them to guide technology development
• How should we compare emerging devices?
 − Comprehensive, systematic and automated comparison in context of how they are going to be used
 − Account for various design types and circuit-level optimizations
 − Fast and flexible evaluation framework
 − Cover the wide performance range (KHz to GHz)
Prior Work

• Three classes of works
 – Devices level\(^1,6\): \(I_{on}/I_{off}\), Subthreshold Slope (SS), CV/I, CV\(^2\)
 – Canonical circuit level: Simple circuits + Analytical model\(^4\) based power-delay tradeoff
 – Full design flow: Library generation, Synthesis, Placement and Routing

• Existing evaluation benchmarks neglect how modern circuits really use devices → These can dramatically change the conclusions.
 – Circuit topology dependence (e.g., logic depth)
 – Design-time power optimization (Multi-\(V_{th}\) and multiple gate sizes)
 – Runtime adaptive power management (DVFS, Gating)

\(^1\) L. Wei, et. al., IEDM, 2010
\(^4\) D. J. Frank, et. al., IBM J, 2006
\(^6\) M. Luisier, et. al., IEDM, 2011
Outline

PROCEED Methodology

Example Experimental Results
Proposed Framework: PROCEED

- Wire capacitance, resistance, and chip area
- Logic depth histogram, Fan-out
- Interconnect model
- Canonical circuit construction
- Variation information
- Ratio of throughput
- Power management
- Delay and power Pareto curves
- Throughput power Pareto curves

Gate sizes

Device model, Activity

V_{dd}, V_{th}, gate sizes constraints

Pareto optimizer

Power management

Logic depth histogram, Fan-out
Canonical Circuit Construction

- Utilize essential design information
 - Logic depth histogram, average number of transistors per gate, average fan-out, average interconnect load and chip area
 - Ignore detailed circuit design
- Little impact on device performance evaluation

- Logic depth histogram
- Simulation blocks (S_i)
 - Construct logic paths in corresponding bins
- Single stage
 - Gate (Nand, XOR, etc.)
 - Buffer, interconnect, fan-out load
- Tuning parameters
 - Gate sizes, V_{dd}, V_{th}
Canonical Circuit Construction

- Logic depth histogram is estimated using slack histogram

- Interconnect
 - Interconnect is proportional to the square-root of chip area\(^1\)
 - Chip area is assumed to be linear to cell area
 - Cell area is modeled as a function of transistor width from DRE\(^2\)

Pareto Optimization: Overview

- Objective functions are weighted sum of delay and power
 - Non-convex problem
 - Gradient descent used
- Delay and power are approximated with second order functions in trust region
- Trust region shrinks during optimization
- Logarithmic barrier is incorporated to confine parameter range

Local models

$$P_i = P(V_{D1}, V_{D2}, V_T, V_L, V_p)$$
$$D_i = D(V_{D1}, V_{D2}, V_T, V_L, V_p)$$
Pareto Optimization: Modeling

• Build simulation-block-level delay and power models by utilizing circuit simulations results.

\[
D_{Si}(y_{i,0} + \Delta y_i) = D_{Si,0} + G_{Di}^T \Delta y_i + \frac{1}{2} \Delta y_i^T H_{Di} \Delta y_i
\]

\[
P_{Si}(y_{i,0} + \Delta y_i) = P_{Si,0} + G_{Pi}^T \Delta y_i + \frac{1}{2} \Delta y_i^T H_{Pi} \Delta y_i
\]

• Objective delay is the longest delay of all logic paths (constructed by simulation blocks)
 – Using high order norm to estimate max-delay function
 \[\rightarrow\] This can make the objective function continuous for gradient calculation

\[
D(X) = W_D \cdot \max \left(D_{S1}(y_1), D_{S2}(y_2), \ldots, D_{Sn}(y_n) \right) \approx W_D \cdot \left\| D_{S1}(y_1), D_{S2}(y_2), \ldots, D_{Sn}(y_n) \right\|_K
\]

• Objective power is the weighted total power

\[
P = \sum_{i=1}^{n} W_i \cdot P_{Si}
\]
Power Management: Overview

• Modern circuits allow devices to operate in three modes: normal, power saving and sleep mode.
 – A 2nd lower V_{dd} is applied to devices in power saving mode
 – Device is turned off in sleeping mode
• Pick best 2nd V_{dd} and optimally divide time spent on each mode
 – Need input of the ratio of average throughput to peak throughput
 – Use polynomial models for delay and power of simulation block as a function of V_{dd}

• Minimizing average power consumption: $f_1P_1 + f_2P_2$
Validation of PROCEED

- **Model\(^3\)** is frequently used for device evaluation
 - Ignoring logic depth histogram and using analytical delay and power models is inaccurate

- **Proposed methodology is 21X (average) more accurate**
 - Efficient to evaluate devices with performance range from MHz to GHz

\(^3\)D. J. Frank, et al., *IBM J*, 2006
Outline

PROCEED Methodology

Example Experimental Results
Impact of Activity

- Low activity circuit benefits low leakage devices
 - TFET better than SOI MOSFET for low-activity, low-performance circuits
Impact of Circuit Topology

- CortexM0 is more evenly distributed in LDH
- Power consumption in MIPS is dominated by short logic paths
 - More accommodating to low power devices (TFETs)
Impact of Power Management

- Peak throughput cross-points shift higher as ratio of average to peak throughput decreases
 - This indicates TFET may be a better device for applications with wide dynamic range in performance needs
Impact of Variation

Variation evaluation indicates that TFET suffers more from effective voltage drop

- TFET and SOI are assumed to have peak 10% Vdd and 50mV Vth worst case variation
- High Sub-threshold Slope (SS) devices are more sensitive to voltage drop
Conclusion

- Proposed new methodology for evaluating emerging devices accounts for circuit topology, adaptivity, variability, and use context.
- Proposed methodology is efficient and accurate for device evaluation over broad operating range.
 - Effective Pareto-based optimization heuristic
 - Accurate circuit simulation and device compact model
- Example comparison of TFET and SOI devices
 - TFET is better for low activity, low logic depth and high dynamic performance design
 - TFET is more sensitive to voltage drop and threshold voltage shifting
- Entire PROCEED source-code (MATLAB, C++) will be made available openly.
Q&A

Thanks!